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Abstract
Finite-size scaling (FSS) is a standard technique for measuring scaling
exponents in spin glasses. Here we present a critique of this approach,
emphasizing the need for all length scales to be large compared to microscopic
scales. In particular we show that the replacement, in FSS analyses, of the
correlation length by its asymptotic scaling form can lead to apparently good
scaling collapses with the wrong values of the scaling exponents.

PACS numbers: 75.10.Jm, 75.50.Lk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper is a critique of finite-size scaling (FSS) methods as applied to spin glasses. We focus
primarily on one- and two-dimensional Ising spin glasses, which order only at temperature
T = 0, though the underlying ideas are quite general. The model is defined by the Hamiltonian
H = − ∑

〈i,j〉 JijSiSj − h
∑

i Si , where h is an external field which will be zero unless stated
otherwise.

In dimension d = 2, a range of different methods for measuring exponents have led to
widely differing quoted values, sometimes by as much as a factor of 2, for the same exponent
[1–8]. Despite years of numerical study, these discrepancies have never been satisfactorily
resolved. Here we present analytical and numerical results in dimension d = 1, for which exact
analytical values for the scaling exponents are known. By applying standard FSS methods to
the data, we find large discrepancies between the numerically determined exponents and the
exact ones. We show that these discrepancies disappear if the data are plotted in a different
way, using the exact correlation length in the FSS analysis instead of its leading scaling form.
We conclude that the main cause of the discrepancies is large corrections to scaling in the
expression for the correlation length, rather than corrections to FSS itself.

For the critical behaviour as T → 0, there is only one independent exponent [9], except
perhaps when the ground state has a non-trivial degeneracy. The exponent on which we focus
our attention is the ‘stiffness exponent’ θ , which describes the dependence on length scale, l,
of the energy, E, of an excitation from the ground state: E ∼ lθ [1, 2, 10, 11]. For d � 2, θ is
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negative and large excitations are easily created by thermal fluctuations, destroying the ground-
state order. Setting E ∼ T gives a characteristic length scale ξ ∼ T −ν , with ν = −1/θ , above
which the ground state is unstable against thermal fluctuations, i.e. ξ can be identified with
the correlation length [1, 10].

The exponentθ describes the dependence on l of the energy of a ‘droplet’ of reversed spins,
of linear size l. The energy is associated with the boundary of the droplet. A measurement
of θ can be made through the numerical study of domain-wall energies, in which a wall, or
‘interface’, is imposed on a finite-size system by choice of boundary conditions [1]. One finds
θ ≈ −0.28 in d = 2. It was recently shown that this result can be obtained in a way which is
explicitly independent of the particular boundary conditions used to impose the interface [12].
The scaling result ν = −1/θ then predicts ν ≈ 3.6 for the correlation length exponent.

There has been some debate as to whether the exponent θ (sometimes called θDW) extracted
from domain-wall energies is identical to the exponent obtained by studying directly the size
dependence of droplet energies. Droplet excitations can be created from the ground state by
reversing a central spin holding the boundary spins fixed, where the scale l is the linear size
of the system [13]. This approach gives θ ≈ −0.42, though the analysis has been criticized
by Middleton who argues that only droplets whose area exceeds some fraction of l2 should be
included [14]. Hartmann and Moore [15] have shown how the apparent difference between the
two values of θ can be explained by invoking a correction to scaling (a subdominant term of
order l−ω, with ω > −θ , in the expression for the droplet energy), and that the corresponding
value of θ is consistent with that obtained from domain-wall studies. Such corrections to
scaling may also account for the value θ ≈ −0.46 obtained by Picco et al in their recent study
of droplet energies [8].

A ‘direct’ measurement of the exponent ν, which describes the divergence of the
correlation length, can be made by studying, for example, the spin-glass susceptibility

χSG = L−d
∑

i,j

〈SiSj 〉2 (1)

where the angular brackets represent a thermal average, the overbar is a disorder average, and
L is the linear size of the system. At T = 0 every term in the sum is unity and χSG = Ld . For
T > 0, 〈SiSj 〉2 = f (r/ξ), where f (x) is a scaling function with f (0) = 1, f (x) ∼ exp(−x)

for large x, giving [9] χSG ∼ ξd ∼ T −γ with γ = dν. FSS predicts χSG = LdF(L/ξ) for
L → ∞, ξ → ∞ with L/ξ fixed but arbitrary. Using ξ ∼ T −ν = T 1/θ , one can determine θ

by plotting L−dχSG against LT −1/θ , and choosing θ to give the best data collapse. Using this
method, Kawashima et al [5] find ν ≈ 2.0, i.e. θ ≈ −0.5, which differs significantly from the
value �−0.28 inferred from the domain-wall studies.

A second method that has been used to extract θ numerically is to measure the
magnetization per spin, m(h) = L−d

∑
i 〈Si〉, induced by a small magnetic field h at T = 0

[6, 16–19]. Since in zero field we have m(0) ∼ L−d/2, a simple scaling argument for small
h gives m(h) = L−d/2g[h(L)/J (L)], where h(L) ∼ hLd/2 is the effective field at scale L
and J (L) ∼ Lθ is the effective coupling at this scale. Hence m(h) = L−d/2M(Ld/2−θh). In
the thermodynamic limit m should become independent of L, which implies m ∼ h1/δ with
δ = 1 − 2θ/d ≈ 1.28 for d = 2. An alternative way of writing the FSS form is

mL(h) = L−d/2G(Ld/2h1/δ) (2)

with G(0+) = const and G(x) ∼ x for x → ∞. With this method, Rieger et al [6] obtained
δ ≈ 1.48, which differs significantly from the scaling prediction ≈1.28 and, naively, predicts
that θ ≈ −0.48 instead of the value ≈−0.28 obtained from domain-wall studies.

To summarize, different ways of measuring θ give different, and seemingly incompatible,
results. The value ν ≈ 2 obtained in [5] is equivalent to θ ≈ −0.5, which is similar to the
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value θ ≈ −0.48 inferred from the m(h) data of [6], and to the values ≈−0.42 and ≈−0.46
obtained by studying droplet excitation in [13] and [8] respectively, all of which differ from
the value ≈−0.28 obtained from domain-wall studies [1, 2, 12].

In an attempt to understand these differences, we have carried out analytical and numerical
studies in space dimension d = 1, for which the corresponding exponent values are known
exactly. We mimic the two-dimensional studies of Kawashima et al [5] and Rieger et al
[6], and look at the T-dependence of χSG at h = 0 and the h-dependence of m at T = 0,
respectively. We conclude that these quantities are affected by corrections to scaling so large
that it is essentially impossible to extract the correct exponent values from system sizes that
are accessible in d = 2.

In the remainder of the paper, therefore, we consider the d = 1 Ising spin glass in two
situations: (i) T > 0 and h = 0. We calculate χSG and use the FSS form χSG = Lf (LT −1/θ )

to determine θ . We show that the exact value of θ gives a very poor data collapse for the system
sizes studied, and that a reasonable data collapse is obtained with a significantly different value
of θ ; (ii) T = 0, h > 0. We calculate mL(h) and use the FSS form mL(h) = L1/2g(L1/2h1/δ)

to determine δ. Again, the exact δ gives a poor collapse, and the best collapse is obtained
with a very different δ. To facilitate comparison with the d = 2 data of Kawashima et al and
of Rieger et al we choose, for the h = 0 results, a bond distribution P(J ) engineered to give
θ = −0.282, i.e. a value equal to that of the d = 2 system, while for the h > 0 data we choose
the distribution such that δ = 1.282 is equal to the value predicted in d = 2 for θ = −0.282.
These choices are imposed by using a bond distribution of the form

Pα(J ) ∝ |J |α exp(−J 2/2). (3)

For any distribution satisfying P(J ) ∼ |J |α for J → 0 it may be shown [10] that θ =
−1/(1 + α) for d = 1, so the choice α = 2.546 gives θ = −0.282, while α = 6.042 gives
δ = 1.282.

2. Results

(i) T > 0, h = 0. The Ising Hamiltonian for d = 1 can be written as H = − ∑
i JiSiSi+1,

and we use free boundary conditions. It is straightforward to show that (for j � i)
〈SiSj 〉 = ∏j−1

r=i tanh(βJi) and

〈SiSj 〉2 = a|j−i| (4)

where a = tanh2(βJr) is independent of r. Finally

χSG = 1

L

L∑

i,j=1

〈SiSj 〉2 = 1 + a

1 − a
− 2a(1 − aL)

L(1 − a)2
. (5)

The quantity a = ∫
dJPα(J ) tanh2(βJ ) may be evaluated numerically for any temperature

T. The resulting χSG is plotted in figure 1, in the scaling form χSG/L against LT −1/θ , for
lattice sizes up to L = 320. In the upper figure, we use the exact value, θ = −0.282, while in
the lower we use θ = −0.36, which is our ‘best fit by eye’. Comparing these two plots one
observes that (i) the exact value of θ gives a good collapse only at small values of the scaling
variable, where χSG/L is close to its T = 0 value of unity; (ii) the ‘best fit by eye’ is a much
better fit over a large part of the plot, especially for the larger systems. Small but systematic
departures from perfect scaling are evident in the low T region, but these are only observable
because we have perfect data (no statistical errors). In real (i.e. noisy) data such small effects
could easily be obscured by the noise, and might lead one to suppose that the correct value of
θ were close to −0.36.
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Figure 1. Susceptibility scaling plot. From top to bottom: θ = −0.28 (theoretical) and θ = −0.36
(best fit by eye).

This tells us that the relation ξ ∼ T −ν , where ν = −1/θ , is only valid for rather small
T. Corrections to this form are important over most of the regime presented in figure 1.
A striking confirmation of this is provided by figure 2, where the same data are plotted against
L/ξexact, where ξexact is the exact correlation length for each temperature. From equation (2)
we can identify this length scale as ξexact = −1/ ln a. The data in figure 2 collapse almost
perfectly for all sizes L � 40.

The lesson here is that it is not FSS itself which is breaking down, but the use of the relation
ξ ∼ T −ν over the whole temperature range explored. We suspect that similar problems affect
the interpretation of the data of Kawashima et al [5].

(ii) T = 0, h > 0. For non-zero magnetic field, the 1D problem cannot be solved
analytically in closed form for general system size, L. One can, however, determine the
relevant correlation length, ξ , numerically. Here ξ is to be interpreted as the length scale over
which the ground state for h > 0 locally resembles the h = 0 ground state. We define it as the
average ‘domain length’, where a domain is a cluster of spins completely aligned with one of
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Figure 2. Data collapse with scaling variable L/ξexact.

the two h = 0 ground states. This definition corresponds to the scaling argument Ld/2h1/δ in
equation (2), i.e. this argument ∼(L/ξ)d/2 with ξ ∝ h−2/dδ .

Data for system sizes up to L = 680 are displayed in figure 3, where each data point
represents an average of 50 000 samples. As explained above, we choose α = 6.042 in (3),
corresponding to the value δ = 1.282 predicted by the scaling theory in d = 2 for θ = −0.282.
The plots are double-logarithmic plots based on the asymptotic scaling form (2) with d = 1.
It is found, however, that if (2) is used as it stands, i.e. L1/2mL(h) is plotted against L1/2h1/δ ,
it is difficult to get a perfect data collapse at small h, for any value of δ. This is because the
magnetization per spin in zero field has a binomial distribution, and its average over samples,
mL(0), is not exactly proportional to L−1/2 for small L (for L → ∞, the binomial distribution
approaches the normal distribution and the L−1/2 dependence becomes asymptotically exact).
An alternative FSS form can, however, be obtained by simply replacing the factors L1/2 in (2)
by 1/mL(0). This has been done in figure 3. In this way, the ordinate is identically zero at
h = 0 and data collapse at small h is greatly improved.

In the upper plot in figure 3, the exact value δ = 1.282 is used, while the lower plot shows
the ‘best fit by eye’ obtained with δ ≈ 1.37. The curves saturate at large h, when all spins
are aligned with the field. The scaling region extends to, and somewhat beyond, the visible
‘elbow’ in the data. It is remarkable that a very good fit by eye (lower plot) is obtained for the
wrong value, δ = 1.37, of the scaling exponent, while the exact value, δ = 1.282, is visibly
worse (upper plot).

This paradox, that the best collapse appears to be obtained with the wrong exponent value,
is resolved in a similar manner to the h = 0 case. In figure 4 we show the same data replotted
against ln[(L/ξ)1/2], where ξ is the average domain length for a given h, as defined above. It
is calculated numerically using transfer matrix methods and taking systems long enough that
the mean domain length converges (which requires longer systems at smaller h).

The collapse is very good, up to and a little beyond the elbow, as expected. The
disappearance, in the new scaling variable, of the plateau from figure 3 is a consequence
of the saturation of ξ , at the value 2, in this regime, i.e. the plateau gets compressed to a single
point in these variables. As in the zero-field case, the failure of the data to collapse with
the correct scaling exponent, when naive FSS is employed, indicates an inappropriate choice
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Figure 3. Magnetization versus field, scaled by the numerically determined zero-field
magnetization. Top: theoretical, δ = 1.282 and bottom: best collapse by eye, δcol = 1.37.

of scaling variable rather than a failure of FSS itself, i.e. the scaling variable L1/2h1/δ is only
useful at very small values of h.

Finally we have studied the ‘domain-wall’ and ‘droplet’ energies directly for the model
with bond distribution (3), choosing α = 2.546, corresponding to θ = −0.282. The system
has L bonds and free boundaries. The domain-wall energy, E, is given by the magnitude
of the weakest bond in the system. Averaging over 105 samples, with 10 � L � 320, and
plotting ln〈E〉 against ln L gives the exponent θ = −0.297(2), which is again different from
the exact value for this model, θ = −0.282, but the difference is much smaller than that in the
studies described earlier in this paper. There is also a small curvature in the data: extracting
the exponent from the last two data points, L = 160 and 320, gives θ = −0.288, even closer
to the exact value.

One can create a droplet excitation by fixing the boundary spins in the ground-state
configuration and reversing the central spin. The droplet that forms around the reversed spin is
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Figure 4. Magnetization scaling plot using the numerically determined correlation length.

bounded by the weakest bonds to its left and right. Computing the droplet energy numerically,
averaging over 105 samples for 10 � L � 320, and plotting ln〈Edroplet〉 against ln L as before
gives θ = −0.303(3). Using only the last two data points gives θ = −0.290. The discrepancy
between the values of θ obtained from domain-wall and droplet energies is not statistically
significant, in contrast to what is observed in d = 2 [8]. In the latter case, the boundary of a
droplet forms a closed loop, which may tend to raise its energy due to an effective repulsion
between different parts of the interface, leading to large corrections to scaling [15]. In d = 1
the ‘interface’ consists of two isolated points and this effect is absent.

3. Conclusion

In summary, we have demonstrated by exact calculations in d = 1 that a naive use of FSS, in
which the asymptotic form of the scaling variable is employed, can lead to erroneous estimates
of the scaling exponents, while FSS itself works rather well. We note that the discrepancies
between the exact exponents and those obtained using FSS have the same sign in d = 1 and
d = 2 when one uses the domain-wall estimate of θ to estimate the ‘exact’ exponents in
d = 2. This suggests that a similar mechanism may be involved in both cases. We conclude
by restating our view that domain-wall studies provide the most reliable determination of the
exponent θ in spin glasses.
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